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Abstract 
A method ofparameterizing the uncertainty ofMayak urine bioassay measmements is 
described. The Poisson lognormal model is assumed and data from 63 cases (1099 urine 
measurements in aU) are used to empirically determine the lognormal normalization 
uncertainty, given the measurement uncertainties obtained from count quantities. The 
natumllogarithm ofthe geometric standard deviation of the normalization uncertainty is 
found to be in the range 0.31 to 0.35 including a measurement component estimated to be 
0.2. 

Introduction 
For internal dose calculations for the Mayak worker epidemiological study [need 
reference I], quantitative estimates ofuncertainty ofthe urine measurements are 
necessary. Some of the data consist of measurements of24h urine excretion on 
successive days (e.g. 3 or 4 days). In a recent publication[2], dose calculations were done 
where the uncertainty of the urine measurements was estimated starting from the 
statistical standard deviation ofthese replicate measmements. This approach is 
straightforward and accurate when the number of replicate measurements is large, 
however, a Monte Carlo study showed it to be problematic for the actual number of 
replicate measurements (median from 3 to 4).[3] Also, it is sometimes important to 
characterize the uncertainty ofa single urine measurement. Therefore this alternate 
method has been developed. 

A very helpful discussion of the available information regarding uncertainties ofMayak 
urine data are contained in the 2002 technical report for project 2.4 [4]. The paper by 
Kranenbuhl et. aL provides an overall description ofmeasmement techniques that have 
been used.[5] Further discussion ofurine measurement uncertainties appears in the 
correspondence by Miller[6], which refers to the paper by Bess et. al. [7). 
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Poisson-lognormal Model 
The Poisson-lognormal uncertainty model [3] is assumed, and the Poisson measurement 
Wlcertainties are characterized by a standard deviation CTm, rather than making exact 
Poisson-lognormal likelihood calculations using coWlt quantities, although this might be 
important when the COWlts are small. 

The fundamental measurement quantities may be taken as the lognormally distributed 
normalization coefficient f, the gross sample COWlts N, the background comrts NB, the 
background scaling factor R, and a lognomally distributed environmentalfanalysis 
laboratory background b. The measurement result y and Wlcertainty CTm not related to 
normalization uncertainty (uncertainty ofI) are given by, 

y= I(N -Nsl R)-b 
(1) 

CT., =~/2(N+NsIR2)+U'; 

in terms ofmeasurement quantities. Using information about measurement quantities 
contained in the Mayak database and discussed in the 2002 technical report [4 ] (e.g., 
about coWlt times and measured count rates), it is possible to determine all the parameters 
in this representation of the data. 

In normal-lognormal model, data uncertainty is specified by U'III and the lognormal 
uncertainty ofI, which will be denoted by S (Geometric Standard Deviation = exp (S)). 
The quantity S depends on the collection protocol, for example true 24-hr collection 
rather than a spot sample, as well as measurement details. An example ofdependence on 
measurement details is when the chemical recovery is estimated, ratheJ' than being 
measured with a tracer. There is then a significant nonnalization uncertainty associated 
with lack ofknowledge of the actual chemical recovery. 

Poisson-lognormal Model in more detail 
In Reference [3], the effect ofa lognormally distributed background b is considered in 
detail 100 expectation value and variance of the number of gross counts are found to be 
given by (Eq. A.2 ofRef. [3]) 

E(N) = PB I R + pes; 12eS; 12 + .!!-.es;12 eS; 12 

I 

(2) 



where E(.) and Var(.) denote the expectation value and the variance. The quantity b is 
the median value of the background. In this model the normalization coefficient lis the 
product of two factors,f", the nonnaJization coefficient associated with the excretion 
time, andlm, the normalization coefficient associated with other measurement quantities 

(3) 


(4) 


and 

f. = 1 (5) 
m ccItem C t:m6It I!Jcount 

where !!Ja is the excretion time associated with the sample, cchat is the efficiency of 

chemical recovery, and CCOIIIII is the counting efficiency. In Eq. (2), the expectation value 

of sample gross counts N has three terms. The first is the contribution from background 
counts given by PB 1R, where PB is the true average value of the number ofbackground 

counts in the background counting period, which is R sample counting periods. The 
second is the contnbution from the amount of radioactive material excreted in urine, 
P =rp 1I , where rp is the quantity of interest. The third term is the contribution from the 

A 

background b . 

The quantities S", Sm, and Sb are the lognormal uncertainties off",I_ andJi,. 

The measured quantity of interest y (the 24h urine excretion) is given by Eq. (1). In this 
equation Nand NB represent randomly varying measurement quantities, while I and b are 
single nominal values used in the calculation of the quantity of interest. The variance ofy 
therefore results from the variances ofNand NB and is given by 

Var(y) =' f' (var(N)+Var(N.)! R')~ f'(N +N.! R')+lTi +(V;' J' 
(6) 

+ 2rpA(Sn.,)bA(SIHII)(Cv (S.,)Y 

using Eq. (2) and making the substitutions E(N) = N and Var(NB ) = PB = N B • The 

quantities 

A(S) =exp(S2 12) 
(7) 

And 



(8) 


are the lognormal mean to median ratio and standard deviation to mean ratio, so that the 
standard deviations ofl and b are given by 

(Yf = IA(S"",)Cv(SIUII) 
(9) 

(Yb =bA(S"")CV(Sb • .) 

With 

S_ =~S; +S; 
(10) 

Sbm = ~S; +S; 

The last equation shows how uncertainties ofln (excretion-lime-related normalization) 
andlm (measurement-related normalization) combine. 

Equation 6 is identical to Equation 1 except for the last term, which represents the 
covariance ofland b and depends onlmbeing variable (CV(Sm) > 0). 

Determination of S 
Urine data collected on some number of successive days with a standard collection 
procedure or protocol are available for 63 cases [2]. The central value of the urine 
measurement is defined as the average or logarithmic average of the measurements on 
successive days. Ifall other uncertainty parameters are known, the normali7ation 
uncertainty Sn can be determined empirically from a large dataset ofsuch data by using 
the relationship 

(11) 

where NDF is the number ofdegrees of freedom, N dolo is the total number of urine data, 

Navg is the number ofaverage urine values, and (Y) i is the average value associated with 

urine measurement Yi. 

It is also possible to use the lognormal approximation for sufficiently positive data, 
where sufficiently positive is defined to mean 

Yi XU{->- (12) 
(Ymi Snm 



with xLN a large number (e.g. 3). Then for these data 

(13) 


where (In(Y»)j is the logarithmic average value associated with urine measurement Yj . 

A difficulty is the large effect on X 2 caused by a few outliers. Ifthe summand in Eq. (11) 

is denoted by x!, where x is the number of standard deviations the measurement deviates 
from the average value, one can consider how the sum in Eq. (11) is influenced by the 
exclusion ofoutliers with large x values, shown in Table I. 

Table I-Influence ofoutliers on X2 / NDF, assuming Sn = 0.27 and Sm = 0.2. The value 

ofSn was adjusted to obtain X2 / NDF == 1 when measurements within 4 standard 
deviations ofthe average are used (last line oftable). 

exclude if x > ., excluded (out of 1099) ,t2INDF 
32 0 4.104 
16 3 1.453 
8 10 1.109 
4 14 1.004 

Of the 14 urine results excluded in the last line ofTable I, 11 were found to have been 
affected by chelation, which greatly increases urine excretion. 

Table II compares the results for Sn = 027 obtained using the "exact" formula given by 
Eq. (II) and the lognormal approximation given by Eq. (13) with X LN = 3 . 

Table II~omparison of X2 / NDF for Sn = 027 using the two methods used to 

evaluate Z2. 

Method NDF =N Jato - N trrg X2 / NDF 
exact 891.5 1085 197 888 1.004 

lognormal 548.6 560 99 461 1.190 

To estimate the statistical error of X2 / NDF because of small sample size in this study 

the dataset is divided into N avg pieces looking at the statistical variations X2 / NDF , 

where NDF in this case is the number of successive samples minus 1. Results are shown 
in Table ID. 

Table Ill-Estimates ofstatistical uncertainty of X2 / NDF because ofsmall sample size. 



Method 
exact 1085 197 0_924 ± 0_072 

lognormal 560 99 1_105±0_111 

In order for the Table III values of X2 1 NDF to be within one standard deviation of 1, Sn 
need be within the range 0.24 to 0.27 using the exact formula, while using the lognormal 
formula within 0.27 to 0.29. 

Composite Representation of Replicate Data 
Replicate data are collected on some number n (e.g. 3) of successive days with a standard 
collection procedure or protocol. The final urine measurement is defined as the average 
of the n measurements. The question is how to parameterize the WlCertainty associated 
with this average result. 

Consider the data shown in Table N below. 

Table /V-individual replicate urine measurements 

measurement nonnalization 
uncertainty uncertainty data variance 

Um1 S {umtl + (A(S) VJCv(S)l 

Um2 S {una! + (A(S)VJCv(S)l 

Um3 S {umJJ2+ (A(S) VJCv(S))2 

In this Table, the quantity S denotes ~S; + S~ ,also lI'denotes the true (but unknown) 

median value of the urine excretio~ which is assumed to be the same for the three days, 
A(S) is the lognormal mean/median ratio, 

A(S) = exp(S2 12) , 

and Cv(S) is the lognormal standard deviation to mean ratio, 

The measurements are independent so the variances add, and the average result has 
variance 



This expression is the same as the variance ofa single measurement with measurement 
uncertainty 

and normalization uncertainty 8effJ given by the solution of the equation 

When S is fairly small, 

which leads to the approximation 

Thus, the individual urine measurements may be replaced by a single composite urine 
measurement having measurement uncertainty C7~ff) and normalization uncertainty 8effJ. 

An example ofurine data uncertainties determined in this way, urine measurements for 

Mayak case number 1 of the set of63 cases discussed in ReE 2 is given in Table V, 

assuming S = 0.34 (Sn = 0.27, Sm = 0.20), and R = 19.2. The reason that the background b 

varies is that it is based on a certain assumed background concentration of plutonium in 

the measured aliquot, which is then multiplied by a varying total daily urine excretion 

volume to obtain the 24h urine excretion. The effective normalization uncertainty is 

given by 


S(eff) =0.34 (1 + (0.34)2 J= 0208 

J3 2 


Table V-Numerical example ofa single composite urine result replacing 3 replicate 
measurements. The ratio ofbackground count time to sample count time, R, is 19.2. 

Date Iy(dpm/24h) I a.{dpm/24h} I!{dpmf24h/count} N{count} INa<count} I b(dpmI24h} I a.,(dpm/24h} 
18-Apr-81 1.14 0.25 0.0106 150 192 0.339 0.212 
19-Apr-81 1.02 0.15 0.00588 216 192 0.188 0.118 
21-Apr-81 2.79 0.46 0.0188 190 192 0.603 0.377 



Composite: 1.65 ± 0.18 dpm/24h, SejJ) = 0.208 
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